Procedure
Suppose you have some markdown document with math in it.
## Billinear forms
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
- $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
- $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
- $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
- $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
- $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
and so on...
Now to render the markdown to the the html, add the below code that loads texme javascript just above the markdown and save the file with .html
extension.
<!DOCTYPE html>
<title>Title of the Page</title>
<!-- <script>window.texme = { style: 'plain' }</script> -->
<script src="https://heykapil.in/script/texme@1.2.2.js"></script>
<textarea>
## Billinear forms
1. Write down the following billinear forms in vector matrix notation $uAv^{T}$.
- $\phi(u,v) = 3x_1y_1 -2x_1y_3 +5x_2y_1+7x_2y_2-8x_2y_3+4x_3y_2-6x_3y_3$.
- $\phi(u,v) = -5x_1y_1 +6x_1y_2 -2x_1y_3+3x_2y_2-6x_2y_3$.
- $\phi(u,v) = 2x_1y_3 -3x_3y_1+4x_3y_4$.
- $\phi(u,v) = 4x_1y_1+2x_1y_2-2x_2y_1+3x_2y_2$.
- $\phi(u,v) = 2x_1y_1-3x_1y_3+2x_2y_2$.
and so on...
This will be rendered as here